ObjectDetection¶
-
class
ObjectDetectionPrediction
(box, confidence, label, index)¶ A single prediction from
ObjectDetection
.- Parameters
box (
BoundingBox
) – The bounding box around the detected object.confidence (
float
) – The confidence of this prediction.label (
str
) – The label describing this prediction result.index (
int
) – The index of this result in the master label list.
-
property
label
¶ The label describing this prediction result.
- Return type
str
-
property
box
¶ The bounding box around the object.
- Return type
-
property
confidence
¶ The confidence of this prediction.
- Return type
float
-
property
index
¶ The index of this result in the master label list.
- Return type
int
-
class
ObjectDetectionResults
(predictions, duration, image, **kwargs)¶ All the results of object detection from
ObjectDetection
.Predictions are stored in sorted order, with descending order of confidence.
- Parameters
predictions (
List
[ObjectDetectionPrediction
]) – The boxes for each prediction.duration (
float
) – The duration of the inference.image (
Optional
[ndarray
]) – The image that the inference was performed on.
-
property
duration
¶ The duration of the inference in seconds.
- Return type
float
-
property
predictions
¶ The list of predictions.
- Return type
List
[ObjectDetectionPrediction
]
-
property
image
¶ The image the results were processed on.
- Return type
Optional
[ndarray
]
-
class
ObjectDetection
(model_id, model_config=None, pre_process=None, pre_process_batch=None, post_process=None, post_process_batch=None)¶ Analyze and discover objects within an image.
Typical usage:
obj_detect = edgeiq.ObjectDetection( 'alwaysai/ssd_mobilenet_v1_coco_2018_01_28' ) obj_detect.load(engine=edgeiq.Engine.DNN) <get image> results = obj_detect.detect_objects(image, confidence_level=.5) image = edgeiq.markup_image( image, results.predictions, colors=obj_detect.colors ) for prediction in results.predictions: text.append("{}: {:2.2f}%".format( prediction.label, prediction.confidence * 100) )
Please refer to this app for example of custom pre and post processing configuration for the model.
- Parameters
model_id (
str
) – The ID of the model you want to use for object detection.model_config (
Optional
[ModelConfig
]) – The model configuration to load. model_id is ignored when model_config is set.pre_process (
Optional
[Callable
[[ObjectDetectionPreProcessParams
],ndarray
]]) – The pre processing to use for inferencing. This is needed when using a model architecture not supported by edgeIQ.pre_process_batch (
Optional
[Callable
[[ObjectDetectionPreProcessBatchParams
],ndarray
]]) – The pre processing to use for batch inference mode. This is needed when using a model architecture not supported by edgeIQ.post_process (
Optional
[Callable
[[ObjectDetectionPostProcessParams
],Tuple
[List
[BoundingBox
],List
[float
],List
[int
]]]]) – The post processing to use for inferencing. This is needed when using a model architecture not supported by edgeIQ.post_process_batch (
Optional
[Callable
[[ObjectDetectionPostProcessBatchParams
],Tuple
[List
[List
[BoundingBox
]],List
[List
[float
]],List
[List
[int
]]]]]) – The post processing to use for batch inference mode. This is needed when using a model architecture not supported by edgeIQ.
-
detect_objects
(image, confidence_level=0.3, overlap_threshold=0.3)¶ Perform Object Detection on an image
- Parameters
image (
ndarray
) – The image to analyze.confidence_level (
float
) – The minimum confidence level required to successfully accept a detection.overlap_threshold (
float
) – The minimum IOU threshold used to reject detections with Non-maximal Suppression during object detection using YOLO models. A higher value will result in a greater number of overlapping bounding boxes returned.
- Return type
ObjectDetectionResults
-
detect_objects_batch
(images, confidence_level=0.3, overlap_threshold=0.3)¶ Perform Object Detection on a list of images
- Parameters
images (
List
[ndarray
]) – The list of images to analyze.confidence_level (
float
) – The minimum confidence level required to successfully accept a detection.overlap_threshold (
float
) – The minimum IOU threshold used to reject detections with Non-maximal Suppression during object detection using YOLO models. A higher value will result in a greater number of overlapping bounding boxes returned.
- Return type
List
[ObjectDetectionResults
]
-
property
accelerator
¶ The accelerator being used.
- Return type
Optional
[Accelerator
]
-
property
colors
¶ The auto-generated colors for the loaded model.
Note: Initialized to None when the model doesn’t have any labels. Note: To update, the new colors list must be same length as the label list.
- Return type
Optional
[ndarray
]
-
property
labels
¶ The labels for the loaded model.
Note: Initialized to None when the model doesn’t have any labels.
- Return type
Optional
[List
[str
]]
-
load
(engine=<Engine.DNN: 'DNN'>, accelerator=<Accelerator.DEFAULT: 'DEFAULT'>)¶ Load the model to an engine and accelerator.
- Parameters
engine (
Engine
) – The engine to load the model toaccelerator (
Accelerator
) – The accelerator to load the model to
-
property
model_config
¶ The configuration of the model that was loaded
- Return type
ModelConfig
-
property
model_id
¶ The ID of the loaded model.
- Return type
str
-
property
model_purpose
¶ The purpose of the model being used.
- Return type
str
-
publish_analytics
(results, tag=None, **kwargs)¶ Publish results to the alwaysAI Analytics Service
Example usage:
try: inference.publish_analytics(results, tag='custom_tag') except edgeiq.PublishError as e: # Retry publish except edgeiq.ConnectionError as e: # Save state and exit app to reconnect
- Parameters
results (~ResultsT) – The results to publish.
tag (
Optional
[Any
]) – Additional information to assist in querying and visualizations.
- Raises
ConnectionBlockedError
when using connection to the alwaysAI Device Agent and resources are at capacity,- Raises
PacketRateError
when publish rate exceeds current limit,- Raises
PacketSizeError
when packet size exceeds current limit. Packet publish size and rate limits will be provided in the error message.
-
class
ObjectDetectionAnalytics
(annotations, model_id, model_config=None)¶ Reads an analytics file and returns result with similar interface as ObjectDetection.
- Parameters
annotations (
List
[List
[ObjectDetectionResults
]]) – Object detection results from all streams.model_id (
str
) – The ID of the model you want to use for object detection.model_config (
Optional
[ModelConfig
]) – The model configuration to load. model_id is ignored when model_config is set.
Typical usage:
# get object detection results from annotation file annotation_files = ['cam0.txt', 'cam1.txt', 'cam2.txt', 'cam3.txt'] annotation_results = [edgeiq.analytics_services.load_analytics_results(annotation) for annotation in annotation_files] obj_detect = edgeiq.ObjectDetectionAnalytics(annotations=annotation_results, model_id=model_id) results = obj_detect.detect_objects(image, confidence_level=.5)
-
detect_objects_for_stream
(stream_idx, confidence_level=0.3, overlap_threshold=0.3)¶ Perform Object Detection on an image for a particular stream by reading results from analytics file
- Parameters
image – The image to analyze.
confidence_level (
float
) – The minimum confidence level required to successfully accept a detection.overlap_threshold (
float
) – The minimum IOU threshold used to reject detections with Non-maximal Suppression during object detection using YOLO models. A higher value will result in a greater number of overlapping bounding boxes returned.
- Return type
ObjectDetectionResults
-
detect_objects
(image, confidence_level=0.3, overlap_threshold=0.3)¶ Perform Object Detection on an image by reading results from analytics file
- Parameters
image (
Optional
[ndarray
]) – The image to analyze.confidence_level (
float
) – The minimum confidence level required to successfully accept a detection.overlap_threshold (
float
) – The minimum IOU threshold used to reject detections with Non-maximal Suppression during object detection using YOLO models. A higher value will result in a greater number of overlapping bounding boxes returned.
- Return type
ObjectDetectionResults
-
detect_objects_batch
(images, confidence_level=0.3, overlap_threshold=0.3)¶ Perform Object Detection on a list of images by reading results from analytics file
- Parameters
images (
Optional
[List
[ndarray
]]) – The list of images to analyze.confidence_level (
float
) – The minimum confidence level required to successfully accept a detection.overlap_threshold (
float
) – The minimum IOU threshold used to reject detections with Non-maximal Suppression during object detection using YOLO models. A higher value will result in a greater number of overlapping bounding boxes returned.
- Return type
List
[ObjectDetectionResults
]
-
property
accelerator
¶ The accelerator being used.
- Return type
Optional
[Accelerator
]
-
property
colors
¶ The auto-generated colors for the loaded model.
Note: Initialized to None when the model doesn’t have any labels. Note: To update, the new colors list must be same length as the label list.
- Return type
Optional
[ndarray
]
-
property
labels
¶ The labels for the loaded model.
Note: Initialized to None when the model doesn’t have any labels.
- Return type
Optional
[List
[str
]]
-
load
(engine=<Engine.DNN: 'DNN'>, accelerator=<Accelerator.DEFAULT: 'DEFAULT'>)¶ Load the model to an engine and accelerator.
- Parameters
engine (
Engine
) – The engine to load the model toaccelerator (
Accelerator
) – The accelerator to load the model to
-
property
model_config
¶ The configuration of the model that was loaded
- Return type
ModelConfig
-
property
model_id
¶ The ID of the loaded model.
- Return type
str
-
property
model_purpose
¶ The purpose of the model being used.
- Return type
str
-
publish_analytics
(results, tag=None, **kwargs)¶ Publish results to the alwaysAI Analytics Service
Example usage:
try: inference.publish_analytics(results, tag='custom_tag') except edgeiq.PublishError as e: # Retry publish except edgeiq.ConnectionError as e: # Save state and exit app to reconnect
- Parameters
results (~ResultsT) – The results to publish.
tag (
Optional
[Any
]) – Additional information to assist in querying and visualizations.
- Raises
ConnectionBlockedError
when using connection to the alwaysAI Device Agent and resources are at capacity,- Raises
PacketRateError
when publish rate exceeds current limit,- Raises
PacketSizeError
when packet size exceeds current limit. Packet publish size and rate limits will be provided in the error message.
-
filter_predictions_by_label
(predictions, label_list)¶ Filter a prediction list by label.
Typical usage:
people_and_apples = edgeiq.filter_predictions_by_label(predictions, ['person', 'apple'])
- Parameters
predictions (
List
[~PredictionT]) – A list of predictions to filter.label_list (
List
[str
]) – The list of labels to keep in the filtered output.
- Return type
List
[~PredictionT]- Returns
The filtered predictions.
-
markup_image
(image, predictions, show_labels=True, show_confidences=True, colors=None, line_thickness=2, font_size=0.5, font_thickness=2, text_box_padding=10, bounding_box_corner_radius=0, text_box_corner_radius=0, text_box_alignment=('left', 'top'), text_box_position=('left', 'top'))¶ Draw boxes, labels, and confidences on the specified image.
Typical usage:
output_image_default= edgeiq.markup_image( image=input_image, predictions=predictions, ) output_image_no_label= edgeiq.markup_image( image=input_image, predictions=predictions, show_labels=False, show_confidences=False ) output_image_rounded_corners= edgeiq.markup_image( image=input_image, predictions=predictions, bounding_box_corner_radius=5, text_box_corner_radius=5 ) output_image_label_centered_top_of_bbox= edgeiq.markup_image( image=input_image, predictions=predictions, text_box_alignment=('center', 'bottom'), text_box_position=('center', 'top') ) output_image_label_centered_middle_of_bbox= edgeiq.markup_image( image=input_image, predictions=predictions, text_box_alignment=('center', 'middle'), text_box_position=('center', 'middle') ) output_image_label_right_aligned_bottom_of_bbox= edgeiq.markup_image( image=input_image, predictions=predictions, text_box_alignment=('right', 'bottom'), text_box_position=('right', 'top') )
- Parameters
image (
ndarray
) – The image to draw on.predictions (
List
[ObjectDetectionPrediction
]) – The list of prediction results.show_labels (
bool
) – Indicates whether to show the label of the prediction.show_confidences (
bool
) – Indicates whether to show the confidence of the prediction.colors (
Optional
[List
[Tuple
[int
,int
,int
]]]) – A custom color list to use for the bounding boxes. The index of the color will be matched with a label index.line_thickness (
int
) – The thickness of the lines that make up the bounding box.font_size (
float
) – The scale factor for the text.font_thickness (
int
) – The thickness of the lines used to draw the text.text_box_padding (
int
) – The padding around the text in each text box.bounding_box_corner_radius (
int
) – The corner radius for the bounding boxes.text_box_corner_radius (
int
) – The corner radius for the text boxes.text_box_alignment (
Tuple
[Literal
[‘left’, ‘center’, ‘right’],Literal
[‘top’, ‘middle’, ‘bottom’]]) – Specifies the alignment of the text relative to the reference point. Accepts a tuple of horizontal (‘left’, ‘center’, ‘right’) and vertical (‘top’, ‘middle’, ‘bottom’) alignment literals.text_box_position (
Union
[Tuple
[Literal
[‘left’, ‘center’, ‘right’],Literal
[‘top’, ‘middle’, ‘bottom’]],Tuple
[int
,int
]]) – Defines the position of the text box’s reference point relative to the bounding box. Can either be a tuple of alignment literals (horizontal, vertical) for automatic positioning, or a tuple of integers (offset_x, offset_y) specifying a custom offset from the center of the bounding box.
- Return type
ndarray
- Returns
The marked-up image.
-
filter_predictions_by_area
(predictions, min_area_thresh)¶ Filter a prediction list by bounding box area.
Typical usage:
larger_boxes = edgeiq.filter_predictions_by_area(predictions, 450)
- Parameters
predictions (
List
[~PredictionT]) – A list of predictions to filter.min_area_thresh (
float
) – The minimum bounding box area to keep in the filtered output.
- Return type
List
[~PredictionT]- Returns
The filtered predictions.
-
overlay_transparent_boxes
(image, predictions, alpha=0.5, colors=None, show_labels=False, show_confidences=False)¶ Overlay area(s) of interest within an image. This utility is designed to work with object detection to display colored bounding boxes on the original image.
- Parameters
image (
ndarray
) – The image to manipulate.predictions (
List
[ObjectDetectionPrediction
]) – The list of prediction results.alpha (
float
) – Transparency of the overlay. The closer alpha is to 1.0, the more opaque the overlay will be. Similarly, the closer alpha is to 0.0, the more transparent the overlay will appear.colors (
Optional
[List
[Tuple
[int
,int
,int
]]]) – A custom color list to use for the bounding boxes or object classes pixel mapshow_labels (
bool
) – Indicates whether to show the label of the prediction.show_confidences (
bool
) – Indicates whether to show the confidence of the prediction.
- Returns
The overlaid image.
-
blur_objects
(image, predictions)¶ Blur objects detected in an image.
- Parameters
image (
ndarray
) – The image to draw on.predictions (
List
[ObjectDetectionPrediction
]) – A list of predictions objects to blur.
- Return type
ndarray
- Returns
The image with objects blurred.
-
class
ObjectDetectionPreProcessParams
(image, size, scalefactor, mean, swaprb, crop)¶ -
image
: numpy.ndarray¶
-
size
: Tuple[int, int]¶
-
scalefactor
: float¶
-
mean
: Tuple[float, float, float]¶
-
swaprb
: bool¶
-
crop
: bool¶
-
-
class
ObjectDetectionPreProcessBatchParams
(images, size, scalefactor, mean, swaprb, crop)¶ -
images
: List[numpy.ndarray]¶
-
size
: Tuple[int, int]¶
-
scalefactor
: float¶
-
mean
: Tuple[float, float, float]¶
-
swaprb
: bool¶
-
crop
: bool¶
-